|
|
修复的重要意义:金属工模具的失效事实上均因其表层局部材料磨损等原因而报废,而且金属工模具的加工周期很长、加工费用极高(尤其是精密复杂模具或大型模具制造加工费高达数十万元乃至数百万元)。因此,对金属工模具真正承受磨损作用的特定部位进行表面强化(“用劲用在点子上”),以大幅度延长、提高工模具的使用寿命,无疑是一种具有重要经济意义的方法。另外,大多数工模具只因表面很薄一层材料被磨损后即失效报废,因此,只须对模具及关键金属零部件表面磨损局部区域进行修复,并在修复过程中把模具表面真正实际承受磨损的表面“换成”特殊高耐磨材料(“好钢用在刀刃上”),就可“变废为宝”,不仅使模具得到修复,而且由于修复后的新模具表面“刃口部位”使用了特殊高耐磨材料,修复后的模具的使用寿命还将较原模具大幅度提高,经济效益巨大(例如:修复一根电厂电机大型轴包括各种准备时间在内也仅需数天时间,但可创造上百万元的经济效益)。
模具工作面金属医生/激光强化处理技术及装备
可对金属工件出现磨损、划伤、针孔、裂纹、缺损变形、硬度降低、沙眼、损伤等缺陷进行沉积、封孔、补平等修复功能。还可在金属表面形成耐磨层、耐蚀层、耐热层、耐氧化层、耐冲击层、防滑层、高粘合层、可焊层、导电层等强化作用。这样就决定了本设备应用的广泛性和先进性。成为各行各业必备的设备。
1、模具制造行业
塑料模表面的打毛,增加美感和使用寿命;头盔塑料模具分型面堆焊修复;铝合金压铸模具分流锥表面强化;模具腔超差、磨损、划伤等修复与强化。
2、塑料橡胶工业
橡塑机械零部件修复,橡胶、塑料件用的模具超差、磨损与修补。
3、航空、航天业
飞机发动机零部件、涡轮、涡轮轴修复或修补,火箭喷嘴表面强化修理,飞机外板部件修复,人造卫星外壳强化或修复,钛合金件的局部渗碳强化,铁基高温合金件的局部渗碳强化,镁合金的表面渗A1等防腐蚀涂层,镁合金件局部缺陷堆焊修补,镍基/钴基高温合金叶片工件局部堆焊修复,如:叶片叶冠阻尼面与叶尖的磨损和导叶的烧蚀等。
4、汽车与机车的制造与维修行业
汽车制造和维修工业中,用于凸轮、曲轴、活塞、汽缸、离合器、摩擦片、排气阀等补差和修复,汽车体的表面焊道缺陷补平修正。
5、船舶、电力行业
电曲轴、轴套、轴瓦、电气元件、电阻器等修复,电气铁路机车轮与底线轨道连接片的焊接,电镀厂导. 电辊、金属氧化处理铜铝电极的制作焊接。
6、机械工业
修正超差工件和修复机床导轨、各种轴、凸轮、水压机、油压机柱塞、气缸壁、轴颈、轧辊、齿轮、皮带轮、弹簧成形用的芯轴、塞规、环规、各类辊、杆、柱、锁、轴承等。
7、铸造工业
铁、铜、铝铸件砂眼气孔等缺陷的修补,铝模型磨损修复。
8、化学工业
反应器搅拌轴及浆可焊上耐磨耐蚀层。用此方法可加工泵柱塞、泵叶轮、泵壳体、密封环、轴套、阀门密封面、阀杆、阀芯、风机叶片、压缩机十字头、耐酸泵柱塞叶轮、套筒及环状零件等。
9、金属、动力、冶金、煤炭工业
送风机零件、翻斗车零件、分粒过滤网、各种冲磨及冲头、煤炭运输丝杆、传送零件、蒸汽阀、重载荷轴承以及轧辊的表面强化、管材生产线V形传辊的表面强化、线材生产线导卫锟的表面强化、轧辊的表面毛化处理、轧辊表压挤伤沟(坑)的在线修复、轧辊颈轴磨损的修复、钼顶头的表面强化、燃烧机、加热机、退火罐、排气管道、冶金炉风嘴、铸磨等修复。
10、水泥工业
水泥干燥设备、鼓风机叶片、传送零部件、齿轮轴、滚炉拖轮、各类轴承、轴套等强化或修复。
11、建筑业
建筑机械零部件、水泥搅拌浆、砖成型机的桥与心轴强化等修复
12、造纸工业
造纸烘缸、压辊、轴颈、齿轮轴、皮带轮等修复。
13、印刷工业
印刷机油墨滚筒、印刷辊轮表面强化与修复
14、食品工业
食品机械零部件的维修,食品模具修补是最佳的方法。若用其他焊接修补会烧伤模具。
15、印染工业
印染机械零部件的修复,特别是对印染设备修复与防腐,更有它的特色。
16、其它行业
兵器工业
在电力、石油、 冶金、汽车等许多工业部门及兵器工业中,材料表面的耐烧蚀涂层的研究越来越受到人们的重视。如大口径火炮的内膛表面,在射击时遭受火药爆炸产生的高温气体的强烈烧蚀,是影响炮管使用寿命的一个重要因素,通常比磨损或疲劳破坏严重得多。
长期以来,炮管镀铬作为一种防烧蚀的方法在国内外广泛应用,但镀铬层往往存在许多固有裂纹,而且很脆,加之镀铬层的显微组织为沿镀铬层厚度方向生长的柱状晶,其耐蚀性能较差,容易脱落。采用电火花表面合金化的方法获得的耐烧蚀涂层与镀铬涂层和未处理的基材相比,基材3次烧蚀循环就严重氧化脱落一层氧化皮;镀铬层处理后烧蚀2次循环时产生明显宏观裂纹并开始剥落,至27次循环时,镀铬层几乎全部脱落;而电火花强化层至30次烧蚀循环后,仅表面颜色变暗,涂层厚度无明显减薄,更无裂纹和剥落现象。
这表明电火花表面合金化是获得耐烧蚀涂层的好办法。
航空工业中的应用
•如今我们采用金属医生技术对多种航空航天、汽车、电机等上使用的铝合金部件的疏松、气孔和表面裂纹等缺陷进行了修复。经过装机使用,效果非常好。
•铝合金表面修复
铝及其合金表面自然形成一层强韧性的氧化膜,由此造成在实际焊接过程中很难防止暴露区域的氧化行为。电阻点焊焊接铝合金也是非常困难的,尽管该技术可以实现铝合金的焊接,因为表面氧化膜的存在导致表面电阻发生变化[12]。与铁不同,铝只有一种同素异形体,这样在冷却时就无相转变发生而造成显微结构的变化。铝合金强化的方式主要有变形强化、固溶强化和析出强化。常规焊接方法一般会在焊接时由于热输入的热量会恶化变形强化或析出强化的铝合金。
•弧焊和点焊是铝合金焊接中较常采用的焊接技术。最近由于激光技术的迅速发展,激光焊接技术得到迅猛的发展并在铝合金的焊接上的应用越来越广泛。然后,由于铝合金种类的不同而存在不同的问题。如,有研究表明在焊接AA6xxx系列铝合金由于存在较大的凝固温度区间而极易形成诸如裂纹等缺陷,在焊接AA5083时由于Mg含量在3~6%之间极易形成疏松缺陷。以上缺点的存在,导致铝合金的激光焊接比较于钢铁材料的焊接而言要复杂得多。
•而且,氧与铝之间的高活性会导致铝合金产品在铸造过程中极易发生疏松和气孔等缺陷,如图1为某型号发动机铸造件表面上形成的缩孔,图2为ZL104铝合金中形成的疏松缺陷。疏松和气孔的存在会严重降低制件的服役性能,甚至造成事故。但由于这些铝合金制件多为薄壁件且一般已经加工成成品,常规的焊补手段很难做到对基材不产生热损伤。而金属医生技术却可以很好的解决这一问题。
?如今我们采用金属医生技术对多种航空航天、汽车、电机等上使用的铝合金部件的疏松、气孔和表面裂纹等缺陷进行了修复。经过装机使用,效果非常好。图3为我们在某航空发动机部件上使用金属医生技术进行修复后的截面图。
图1 航空发动机上铸造Al合金表面的气孔缺陷
图2 ZL104合金上形成的疏松
图3 Al-Si合金表面的HEMAA涂层
钛合金的表面渗碳和修复
•钛及其合金由于其突出的综合性能而广泛应用于航空航天、化学、汽车制造以及核工业领域。但钛合金由于不耐磨,因此需要进行表面渗碳处理以提高其表面耐磨性。
常规渗碳方法有电镀、渗碳炉渗碳、放电加工、PVD、CVD等方法,但这些方法均没有易加工、处理温度低、可高速以及大面积处理等优点。采用电火花渗碳形成渗碳层,其渗层深约5μm,经电子探针和X射线分析确认是碳向钛基体梯度渗入生成的TiC层。该方法属于扩散处理的一种,得到的硬化层与涂层处理得到的硬质层不同,具有与一般的梯度膜同样良好的致密性,硬度为Hv2200? 基材约为Hv200。经摩擦实验发现,电火花加工处理可降低钛的摩擦系数,提高耐磨性。另外,经处理的表面耐盐水和硫酸的腐蚀性能也优于纯钛。
•另外,我们还对飞机的钛合金防冰壳体、铁基高温合金以及镁合金零部件进行了电火花强化处理。
•表面渗碳
•钛合金在制作成转动部件后进行应用非常具有吸引力,如汽车的阀门、化工用的泵阀以及飞机使用的部件。然而钛合金的耐磨性非常差,因为它在运动过程中极易发生粘着磨损。
钛及钛合金的渗碳可以在非氧化性气氛的环境下实现。根据Ti-C相图可以发现,Ti-C相图有别于Ti-O相图与Ti-N相图,C在Ti中的固溶度非常小。TiC化合物的厚度一般在1~10μm。但一旦TiC形成后,再形成更深的渗碳层就非常不容易。渗碳温度一般在1050℃的温度下进行,同时需要有渗碳介质存在才能完成渗碳过程。
图4为Ti-C相图。其中γ相为TiC1-x,此处x在一定范围内变化。
传统的渗碳处理工艺是不能完成对指定区域的渗碳。而金属医生恰好可以实现在常温下对指定区域的渗碳。
•钛合金表面的渗碳实验采用碳棒作电极,钛合金作为基体材料。图5为渗碳结束后得到的硬度分布曲线,表层的显微硬度可以到达Hv1500,由表及里存在梯度逐渐降低到基材的位置。在合金化过程中将发生如下化学反应过程:
C+α―Ti→αTi(C) (1)
C+Ti→TiC (2)
如今该工艺已经成功的应用到化工厂阀门表面的渗碳和某型号飞机用钛合金部件的表面强化处理上。图6即为我们对某化工厂阀门表面进行渗碳处理的实物图,图7中黑色区域即为渗碳强化处理区域。
图4Ti-C相图
图5 TC4钛合金表面渗碳层的显微硬度
图6 采用金属医生进行合金化渗碳处理的阀门
(黑色区域为处理部位)
钛合金的修复
航空航天部件上使用的钛合金基本上是采用热处理强化的高强度钛合金进行制造的。这些部件由于在操作运转、腐蚀、磨擦等工况的作用发生磨损和损伤。然而,每年均有大量昂贵的鱼雷、药筒以及刮伤的钛合金部件由于摩擦而表面形成缺陷需要修复。同时有一部分钛合金存在铸造缺陷需要进行修复。一部分钛合金部件可以采用传统的焊接技术进行修复。由于传统的焊接方法会对基材产生大量的热损伤,而且这种热损伤常常是有害的,会造成部件的变形、腐蚀敏感性增强、热影响区的强度下降、吸氢/氮/氧等后果。而且,一些高强钛合金如武器或飞机发动机上使用的Ti-6A-2Sn-4Zr-6Mo合金、被认为是不可焊合金。基于以上原因,这些部件的修复一般不考虑采用常规的焊接技术进行修复的办法。图7为由于磨损和龟裂造成的缺陷。图8为在Ti6Al4V基材上进行金属医生后得金相照片。
图7磨损与减尺后的Ti6Al4V-涡轮销轴
图8在Ti6Al4V表面上制备出的金属医生涂层
电厂中的应用
•金属医生是一种微脉冲焊接技术,它利用电路短路产生的高脉冲电流,瞬间将电极材料的尖端熔化,从而在微小的局部区域进行小面积的增厚。由于放电局限于电极的尖端和工件表面上的微小区域,使得该工艺的热输入量非常小,不会造成对基材组织的影响,或者对基材的组织影响非常小。金属医生在难修复或难于制备涂层的材料上,尤其是在热影响区的影响不得不考虑的场合,显示出无可比拟的优越性。金属医生不需要进行前/后热处理。因此,该技术在修复大型、高附加值、难拆卸的设备部件上的应用价值越来越明显。由于不见在尺寸恢复/强化时处于环境温度,从而避免产生热变形和热应力等问题。本文主要介绍使用金属医生技术在电站汽轮机、核电站、水利部门、航空航天上由于腐蚀而造成的部件的损伤失效的性能恢复与强化上的典型应用。
•山东某电厂蒸汽轮机壳体密封面采用电火花修复技术进行了修复,取得了良好的经济效益。该厂10万千瓦发电机组蒸汽机转速为 10000r/min ,工作压力为 1.47MPa。由于铸铁壳体密封面因高压蒸汽冲蚀泄露,末级排气部位高压蒸汽( 686 ~ 784kPa )串入压力为 -89.6kPa 的真空密封带。采用电火花设备成功修复了严重冲蚀的铸铁密封面,保证了设备的正常运行。
汽轮机类部件激光/金属医生修复 |
|