|
|
因为在缺氧状态下,红细胞代偿性增多,超过最适红细胞压积水平又可导致血液粘滞度增高,而激光照射RBC,HCT的指标尚未改变,血液粘滞度却显著降低,认为红细胞聚集性降低可能是该项治疗的主要机制[7]。
1.3.3 活血抗凝作用 刘颖等观察120例颈内动脉系统急性缺血性脑血管疾病患者,同样证明激光的血管内照射改善了血液流变学性能,改善微循环,增快脑血流速度,而且可能有激活纤溶系统功能的作用[8]。
吴光敏等学者最近从弱激光对α-螺旋蛋白质分子作用方面,在理论上研究了弱激光所引起的氢键-肽键上的角共振,认为这种共振极有可能会使蛋白质中的氢键打开,而导致蛋白质二级以上的结构改变,蛋白质空间构象的变化将会引起酶的活性变化,如果由此产生一系列正效应,则可改善细胞功能,刺激免疫系统。激光引起的这种共振能够破坏那些处于临界状态上的蛋白质间的结合,如:阻碍血液中的纤维蛋白间的相互结合,降低纤维蛋白的浓度。从理论上证实了血管内照射的活血、抗凝作用机制[9]。
1.3.4 调节免疫、内分泌 徐清等报道650 nm的半导体激光血管内照射对人体外周血T淋巴细胞亚群及NK细胞的免疫调节作用,对CD4+/CD8+比值具有双向调控作用,即偏离(高于或低于)正常值的患者照射后恢复到正常水平[10]。此外,低功率激光对糖尿病患者胰岛素、性激素有良好的调节作用[11]。在眼科,低功率的半导体激光用于青光眼的治疗,视网膜光凝固和视网膜固定等。
2 高功率激光的应用与发展前景
高功率激光在医学上的应用已经非常普遍。从体表各种疣、痣、赘生物及良恶性肿瘤的气化切割,到内腔疾病的治疗。从最早的二氧化碳、Nd:YAG激光到准分子激光、高能超脉冲二氧化碳激光、调Q的翠绿宝石、HO:YAG激光以及高功率半导体激光的应用,激光器逐步趋向于小型化、轻便化。柔韧的光纤可选择性地输出较高功率的激光。特别是近几年出现的HO:YAG和高功率半导体激光使激光外科技术获得重大进展,在普外、泌尿、妇科、耳鼻喉科等多个领域推广使用。
2.1 HO:YAG-中红外激光
波长为2.15 μm左右HO:YAG激光,目前脉冲能量可达0.5~2.8 J/脉冲;脉冲频率5~40次/s;平均功率1.25~80 W。人体组织水吸收率在2.0、3.0 μm光的波长附近有两个尖锐的吸收峰,此波段与组织作用时,光易被体液吸收,对邻近组织热扩散作用小,比其它可见光及近红外激光的热损伤小,光作用点吸收强[12]。现已成功地应用于各内窥镜手术:经喉镜治疗声带息肉;经纤维支气管镜治疗肺癌;经食道、胃、肠镜治疗息肉、恶性肿瘤;腹腔镜下治疗卵巢囊肿、子宫内膜移位症;膀胱镜、输尿管镜下进行前列腺肥大、碎石、膀胱癌等手术。气化切割作用优于Nd:YAG激光。
2.2 半导体激光
早期的半导体激光因不能输出高功率激光而受到限制。关键在于微型大功率半导体芯片的生产技术。随着高功率半导体激光阵列技术、可兼容的光导纤维以及参量计算精密控制技术的出现,医学多科应用的前景十分可观。英国研制的805 nm波长的砷化镓铝半导体激光,不需水冷却,体积很小,能同时完成气化和凝固作用。它具有五种工作模式:①)接触式手术:非常适合在内窥镜下进行最小侵入式手术,如膀胱肿瘤、前列腺切除、悬雍垂及鼻息肉切除。 |
|