|
|
很高兴看到这么多的分享, 为了便于大家计算任意多模激光束经透镜变换后的束腰位置及腰斑半径,我推导了一整套公式,大家可以看到公式里带有M2因子, 如果是基模, M2取1就是了.
另外计算透镜后的输出光腰位置的公式很象几何光学的物象公式, 我说过几何光学与高斯光学是相通的,在几何光学里,点光源的尺寸为零点因此可以看作是高斯光学在远场的特例, 也就是说在高斯光 学公式中将瑞利长度取零就成了几何光学的公式. 正因为高斯光学中存在瑞利长度, 它与几何光学的最大区别出来了,当高斯光束的腰在透镜的前焦点时,它的输出光腰在透镜的后焦点, 而几何光学的象却跑到无穷远. 在高斯光学中, 象点是永远不会跑到无穷远的.
在本人推导公式时, 用了一些英语, 请见谅,我不是崇洋媚外, 而是我这里太落后, 我的打字软件是上世纪的南极星, 然后拷到英文的WORD里, 再转贴上来.
顺便说一下, 看到LINGKONGCHOUSHE解决了问题, 我很高兴, 但你贴出的公式确实不含有多模因子, 也许是打错了吧?
-------------------------------------------------------------------------------------------------
Gaussian beam conversion by using a thin positive lens
Beam waist location is determined by
1/ [(s/f) + (ZR/M2f)2 / (s/f -1) ] + 1/(s”/f) = 1
Where,
s is the input beam waist location (distance from beam waist to the principle plane of the lens)
s” is the output beam waist location
M2 is the beam quality factor and can be calculated by
M2 = beam waist diameter × far field divergence full angle / [(4/π) ×λ]
ZR is the Rayleigh range of multimode laser beam, and can be calculated by
ZR = π ω02 / (λ × M2), where ω0 is the radius of the beam waist
If we know the ω0, input beam location, then we can calculate the output beam waist location.
The radius of the output beam waist can be determined by the magnification ratio “m” of the system
m = 1 / {[1-(s/f)]2 + (ZR/f)2}0.5
Output beam waist radius = magnification ratio × input beam waist radius
Far field divergence full angle of the output beam = input beam far field divergence full angle / magnification ratio
Beam radius at any location Z can be calculated as following, where Z is the distance between the waist and the point to be calculated
ω (z) = ω0 × { 1 + [(Z × λ × M2)/ (π ω02)]2}0.5 |
|