|
|
[讨论]光纤传感
李补莲□
摘 要:在当前信息时代,对于传感器的需求量日益增多,同时,其性能要求也越来越高。随着计算机辅助设计技术(CAD)、微机电系统(MEMS)技术、光纤技术、信息理论以及数据分析算法不断迈上新的台阶,传感器系统正朝着微型化、智能化和多功能化的方向发展。本文重点论述这三类传感器的技术现状、功能及发展前景,并穿插介绍了它们在信号探测中的某些成功的应用实例。
关键词:微型传感器、智能化传感器、多功能传感器、信号探测、综述
一、引言
在当今社会,几乎没有任何一种科学技术的发展和应用能够离得开传感器和信号探测技术的支持。生活在信息时代的人们,绝大部分的日常生活与信息资源的开发、采集、传送和处理息息相关。作用原理不同,功能各异的形形色色探测器作为信息感知、捕获和探测的窗口,在信号探测与信息处理系统中起着极为重要的作用。与此同时,在当前信息量激增和新的信息类型不断涌现的情况下,用于信号探测的传感器正面临许多新的问题和新的需求。在这种形势下,象光纤传感器、CCD传感器、红外传感器、生物传感器、遥控传感器、微波传感器、超导体传感器以及液晶传感器等许多新型传感器便应运而生,而这些新型传感器的出现反过来又极大地推动着信息技术的更快速发展。
分析当前信息与技术发展状态作者认为,21世纪的先进传感器必须具备小型化、智能化和多功能化等优良特征。本文以这一指导思想为主线,系统论述了微型传感器、智能化传感器以及多功能传感器的技术现状、功能及发展前景,并穿插介绍了这三类传感器在信号探测中的一些成功的应用实例。
二、微型传感器(Micro Sensor)
为了能够与信息时代信息量激增、要求捕获和处理信息的能力日益增强的技术发展趋势保持一致,对于传感器性能指标(包括精确性、可靠性、灵敏性等)的要求越来越严格;与此同时,传感器系统的操作友好性亦被提上了议事日程,因此还要求传感器必须配有标准的输出模式;而传统的大体积弱功能传感器往往很难满足上述要求,所以它们已逐步被各种不同类型的高性能微型传感器所取代;后者主要由硅材料构成,具有体积小、重量轻、反应快、灵敏度高以及成本低等优点。
1、由计算机辅助设计(CAD)技术和微机电系统(MEMS)技术引发的传感器微型化
目前,几乎所有的传感器都在由传统的结构化生产设计向基于计算机辅助设计(CAD)的模拟式工程化设计转变,从而使设计者们能够在较短的时间内设计出低成本、高性能的新型系统,这种设计手段的巨大转变在很大程度上推动着传感器系统以更快的速度向着能够满足科技发展需求的微型化的方向发展。
对于微机电系统(MEMS)的研究工作始于20世纪60年代,其研究范畴涉及材料科学、机械控制、加工与封装工艺、电子技术以及传感器和执行器等多种学科,是一个极具前景的新兴研究领域。MEMS的核心技术是研究微电子与微机械加工与封装技术的巧妙结合,期望能够由此而制造出体积小巧但功能强大的新型系统。经过几十年的发展,尤其最近十多年的研究与发展,MEMS技术已经显示出了巨大的生命力,此项技术的有效采用将信息系统的微型化、智能化、多功能化和可靠性水平提高到了一个新的高度。在当前技术水平下,微切削加工技术已经可以生产出来具有不同层次的3D微型结构,从而可以生产出体积非常微小的微型传感器敏感元件,象毒气传感器、离子传感器、光电探测器这样的以硅为主要构成材料的传感/探测器都装有极好的敏感元件[1],[2]。目前,这一类元器件已作为微型传感器的主要敏感元件被广泛应用于不同的研究领域中。
2、由敏感光纤技术引发的传感器微型化
当前,敏感光纤技术日益成为微型传感器技术的另一新的发展方向。预计,随着插入技术的日趋成熟,敏感光纤技术的发展还会进一步加快。光纤传感器的工作原理是将光作为信号载体,并通过光纤来传送信号。由于光纤具有良好的传光性能,对光的损耗极低,加之光纤传输光信号的频带非常宽,且光纤本身就是一种敏感元件,所以光纤传感器所具有的许多优良特征为其它所有传统的传感器所不及。
概括来讲,光纤传感器的优良特征主要包括重量轻、体积小、敏感性高、动态测量范围大、传输频带宽、易于转向作业以及它的波形特征能够与客观情况相适应等诸多优点,因此能够较好地实现实时操作、联机检测和自动控制。譬如,一个初级位移光纤传感系统包括光放射体(光源、光纤头及光接收器)和光电转换元件。其工作原理为:光放射体发出的光经由输入光纤被传送到反射镜上—输出光纤接收到光信号—光电转换元件将光信号转换成电子信号;鉴于这样的工作原理,我们完全可以根据所接收到的光的密度推断出来可测得的位移量。如果能够将这样的初级探测系统的结构做一些改进并消除其死区的话,其分辨率往往可以高达0.01mm以上。在柔性机械制造系统中,光纤位移探测器联机探测系统的光纤孔径中共包括有4组光纤维,其中的两组用于地址分配,另外两组执行测量任务[1],[3]。
光纤还可以应用于3D表面的无触点测量。近年来,随着半导体激光LD、CCD、CMOS图形传感器、方位探测装置PSD等新一代探测设备的问世,光纤无触点测量技术得到了空前迅速的发展。
在无触点测量技术中,主要有光纤法和聚焦点偏移(out-focus)法。其中,光纤法的主要特征是它可以借助于所测变量来调节波导管的光波,并用拟定光波参数的办法来为测量信号增值。在聚焦点偏移法中,偏移量被转换成物镜平面相对于测量平面的偏差;然后,此偏差再被转换成物镜反射光斑的亮度变差或光敏探测值;最后再转换成电子量输出值。这种方法的分辨率极高,且其相关探测器的体积可以被制造得相当小。在采用全息光学元件的情况下,聚焦点偏移法的惯用结构一般可以从T结构到Y结构不等,这样就有可能在一个半导体芯片上设计出极轻型的发射体和接收器[3]。
3、微型传感器应用现状
就当前技术发展现状来看,微型传感器已经对大量不同应用领域,如航空、远距离探测、医疗及工业自动化等领域的信号探测系统产生了深远影响;目前开发并进入实用阶段的微型传感器已可以用来测量各种物理量、化学量和生物量,如位移、速度/加速度、压力、应力、应变、声、光、电、磁、热、PH值、离子浓度及生物分子浓度等[4]。
三、智能化传感器(Smart Sensor)
智能化传感器(Smart Sensor)是20世纪80年代末出现的另外一种涉及多种学科的新型传感器系统。此类传感器系统一经问世即刻受到科研界的普遍重视,尤其在探测器应用领域,如分布式实时探测、网络探测和多信号探测方面一直颇受欢迎,产生的影响较大。
1、智能化传感器的特点
智能化传感器是指那些装有微处理器的,不但能够执行信息处理和信息存储,而且还能够进行逻辑思考和结论判断的传感器系统。这一类传感器就相当于是微型机与传感器的综合体一样,其主要组成部分包括主传感器、辅助传感器及微型机的硬件设备。如智能化压力传感器,主传感器为压力传感器,用来探测压力参数,辅助传感器通常为温度传感器和环境压力传感器。采用这种技术时可以方便地调节和校正由于温度的变化而导致的测量误差,而环境压力传感器测量工作环境的压力变化并对测定结果进行校正;而硬件系统除了能够对传感器的弱输出信号进行放大、处理和存储外,还执行与计算机之间的通信联络[3]。
通常情况下,一个通用的检测仪器只能用来探测一种物理量,其信号调节是由那些与主探测部件相连接着的模拟电路来完成的;但智能化传感器却能够实现所有的功能,而且其精度更高、价格更便宜、处理质量也更好。与传统的传感器相比,智能化传感器具有以下优点:
(1) 智能化传感器不但能够对信息进行处理、分析和调节,能够对所测的数值及其误差进行补偿,而且还能够进行逻辑思考和结论判断,能够借助于一览表对非线性信号进行线性化处理,借助于软件滤波器滤波数字信号。此外,还能够利用软件实现非线性补偿或其它更复杂的环境补偿,以改进测量精度。
(2) 智能化传感器具有自诊断和自校准功能,可以用来检测工作环境。当工作环境临近其极限条件时,它将发出告警信号,并根据其分析器的输入信号给出相关的诊断信息。当智能化传感器由于某些内部故障而不能正常工作时,它能够借助其内部检测链路找出异常现象或出了故障的部件。
(3) 智能化传感器能够完成多传感器多参数混合测量,从而进一步拓宽了其探测与应用领域,而微处理器的介入使得智能化传感器能够更加方便地对多种信号进行实时处理。此外,其灵活的配置功能既能够使相同类型的传感器实现最佳的工作性能,也能够使它们适合于各不相同的工作环境。
(4) 智能化传感器既能够很方便地实时处理所探测到的大量数据,也可以根据需要将它们存储起来。存储大量信息的目的主要是以备事后查询,这一类信息包括设备的历史信息以及有关探测分析结果的索引等;
(5) 智能化传感器备有一个数字式通信接口,通过此接口可以直接与其所属计算机进行通信联络和交换信息。此外,智能化传感器的信息管理程序也非常简单方便,譬如,可以对探测系统进行远距离控制或者在锁定方式下工作,也可以将所测的数据发送给远程用户等。
2、智能化传感器的发展与应用现状
目前,智能化传感器技术正处于蓬勃发展时期,具有代表意义的典型产品是美国霍尼韦尔公司的ST-3000系列智能变送器和德国斯特曼公司的二维加速度传感器,以及另外一些含有微处理器(MCU)的单片集成压力传感器、具有多维检测能力的智能传感器和固体图像传感器(SSIS)等。与此同时,基于模糊理论的新型智能传感器和神经网络技术在智能化传感器系统的研究和发展中的重要作用也日益受到了相关研究人员的极大重视[5]。
需要特别指出的一点是:目前的智能化传感器系统本身尽管全都是数字式的,但其通信协议却仍需借助于4~20 mA的标准模拟信号来实现。一些国际性标准化研究机构目前正在积极研究推出相关的通用现场总线数字信号传输标准;不过,在眼下过渡阶段仍大多采用远距离总线寻址传感器(HART)协议,即Highway Addressable Remote Transducer。这是一种适用于智能化传感器的通信协议,与目前使用4~20mA模拟信号的系统完全兼容,模拟信号和数字信号可以同时进行通信,从而使不同生产厂家的产品具有通用性。
目前,智能化传感器多用于压力、力、振动冲击加速度、流量、温湿度的测量,如美国霍尼韦尔公司的ST3000系列全智能变送器和德国斯特曼公司的二维加速度传感器就属于这一类传感器。另外,智能化传感器在空间技术研究领域亦有比较成功的应用实例[6]。
在今后的发展中,智能化传感器无疑将会进一步扩展到化学、电磁、光学和核物理等研究领域。可以预见,新兴的智能化传感器将会在关系到全人类国民生的各个领域发挥越来越大作用。
四、多功能传感器(Multifunction Sensor)
如前所述,通常情况下一个传感器只能用来探测一种物理量,但在许多应用领域中,为了能够完美而准确地反映客观事物和环境,往往需要同时测量大量的物理量。由若干种敏感元件组成的多功能传感器则是一种体积小巧而多种功能兼备的新一代探测系统,它可以借助于敏感元件中不同的物理结构或化学物质及其各不相同的表征方式,用单独一个传感器系统来同时实现多种传感器的功能。随着传感器技术和微机技术的飞速发展,目前已经可以生产出来将若干种敏感元件综装在同一种材料或单独一块芯片上的一体化多功能传感器。
1、多功能传感器的执行规则和结构模式
概括来讲,多功能传感器系统主要的执行规则和结构模式包括:
(1) 多功能传感器系统由若干种各不相同的敏感元件组成,可以用来同时测量多种参数。譬如,可以将一个温度探测器和一个湿度探测器配置在一起(即将热敏元件和湿敏元件分别配置在同一个传感器承载体上)制造成一种新的传感器,这样,这种新的传感器就能够同时测量温度和湿度。
(2) 将若干种不同的敏感元件精巧地制作在单独的一块硅片中,从而构成一种高度综合化和小型化的多功能传感器。由于这些敏感元件是被综装在同一块硅片中的,它们无论何时都工作在同一种条件下,所以很容易对系统误差进行补偿和校正。
(3) 借助于同一个传感器的不同效应可以获得不同的信息。以线圈为例,它所表现出来的电容和电感是各不相同的。
(4) 在不同的激励条件下,同一个敏感元件将表现出来不同的特征。而在电压、电流或温度等激励条件均不相同的情况下,由若干种敏感元件组成的一个多功能传感器的特征可想而知将会是多么的千差万别!有时候简直就相当于是若干个不同的传感器一样,其多功能特征可谓名副其实。
2、多功能传感器的研制与应用现状
多功能传感器无疑是当前传感器技术发展中一个全新的研究方向,日前有许多学者正在积极从事于该领域的研究工作。如将某些类型的传感器进行适当组合而使之成为新的传感器,如用来测量流体压力和互异压力的组合传感器。又如,为了能够以较高的灵敏度和较小的粒度同时探测多种信号,微型数字式三端口传感器可以同时采用热敏元件、光敏元件和磁敏元件;这种组配方式的传感器不但能够输出模拟信号,而且还能够输出频率信号和数字信号[7]。
从目前的发展现状来看,最热门的研究领域也许是各种类型的仿生传感器了,而且在感触、刺激以及视听辨别等方面已有最新研究成果问世。从实用的角度考虑,多功能传感器中应用较多的是各种类型的多功能触觉传感器,譬如人造皮肤触觉传感器就是其中之一,这种传感器系统由PVDF材料、无触点皮肤敏感系统以及具有压力敏感传导功能的橡胶触觉传感器等组成。据悉,美国MERRITT公司研制开发的无触点皮肤敏感系统获得了较大的成功,其无触点超声波传感器、红外辐射引导传感器、薄膜式电容传感器、以及温度、气体传感器等在美国本土应用甚广。
与其它方面的研究成果相比,目前在人工嗅觉方面的研究还似乎远远不尽人意。由于嗅觉元件接收到的判别信号是非常复杂的,其中总是混合着成千上万种化学物质,这就使得嗅觉系统处理起这些信号来异常错综复杂。
人工嗅觉传感系统的典型产品是功能各异的Electronic nose(电子鼻),近10多年来,该技术的发展很快,目前已有数种商品化的产品在国际市场流通,美、法、德、英等国家均有比较先进的电子鼻产品问世[8]。
“电子鼻”系统通常由一个交叉选择式气体传感器阵列和相关的数据处理技术组成,并配以恰当的模式识别系统,具有识别简单和复杂气味的能力,主要用来解决一般情况下的气味探测问题。根据应用对象的不同,“电子鼻”系统传感器阵列中传感器的构成材料及配置数量亦有所不同,其中,构成材料包括金属氧化物半导体、导电聚合物、石英晶振等,配置数量则从几个到数十个不等。总之,“电子鼻”系统是气体传感器技术和信息处理技术进行有效结合的高科技产物,其气体传感器的体积很小,功耗也很低,能够方便地捕获并处理气味信号。气流经过气体传感器阵列进入到“电子鼻”系统的信号预处理元件中,最后由阵列响应模式来确定其所测气体的特征。阵列响应模式采用关联法、最小二乘法、群集法以及主要元素分析法等方法对所测气体进行定性和定量鉴别。美国Cyranosciences公司生产的Cyranose 320电子鼻是目前技术较为先进、适用范围也比较广的嗅觉传感系统之一,该系统主要由传感器阵列和数据分析算法两部分组成,其基本技术是将若干个独特的薄膜式碳-黑聚合物复合材料化学电阻器配置成一个传感器阵列,然后采用标准的数据分析技术,通过分析由此传感器阵列所收集到的输出值的办法来识别未知分析物。据称,Cyranose 320电子鼻的适用范围包括食品与饮料的生产与保鲜、环境保护、化学品分析与鉴定、疾病诊断与医药分析以及工业生产过程控制与消费品的监控与管理等[9]。
五、结论
综上所述,当前技术水平下的传感器系统正向着微小型化、智能化和多功能化的方向发展。今后,随着CAD技术、MEMS技术、信息理论及数据分析算法的继续向前发展,未来的传感器系统必将变得更加微型化、综合化、多功能化、智能化和系统化。在各种新兴科学技术呈辐射状广泛渗透的当今社会,作为现代科学“耳目”的传感器系统,作为人们快速获取、分析和利用有效信息的基础,必将进一步得到社会各界的普遍关注。
--------------------------------------------------------------------------------
参考资料:
[1]. LIU Quan,Huang Xiaochun.The new type sensors and their application in signal detection[A].ICSC 2000[C].USA: Proceedings of SPIE.2000,4077:69-72.
[2]. 刘光辉、亢春梅,MEMS技术的现状和发展趋势[J].传感器技术,2001,20(1):52-56.
[3]. LIU Guang-yu.The state of the art and the future of sensors[J].Measure And Control Technology,1999(18):1-4.
[4]. Wen H K.The future of sensor and actuator systems[J].Sensors and Actuators A,1996,56:193-197.
[5]. 刘君华,智能传感器系统[M],西安电子科技大学出版社,2000-6
[6]. Krishna C.etc.A smart gas sensor for monitoring environmental changes in closed systems:results from the MIR space station[J]. Sensors and Actuators B,1999,55:118-126
[7]. Wang Qi,et al.Muitifunction senser[J].Journal of Transducer Technology,1999(18):54-56.
[8]. 高大启,扬根兴.电子鼻技术新进展及其应用前景[J].传感器技术,2001,20(9):1-5.
[9]. Erik S. We digitize smellTM [EB/LO].http://Cyranosciences.com/technology/sensor.html,2001-02-09
注:[EB/LO]为电子文献。
New Type Sensors in the Information Age
Abstract:In the information age, the demand for sensor is increasing ,as the requirements for the sensor performance is more and more higher. Now, sensor systems are becoming micro, smart and multifunction along with development of Computer Aided Design(CAD) technology, Micro-Electromechanical System (MEMS) technology, Fiber-optic technology, information theory and data analysis algorithms. The status quo of technology, function and development prospect of these three type sensors are discussed chiefly in this paper, some successful applications examples are given as well.
Key words:Micro Sensor;Smart Sensor;Multifunction Sensor;Signal Detection;Review
作者简介:
李补莲:北方自动控制技术研究所高级工程师
地址:太原市193信箱6分箱,
邮政编码:030006,
电话:0351-7023553-2073
|
|