光电工程师社区

标题: [转帖]生物芯片技术(长篇连载) [打印本页]

作者: donkey    时间: 2004-12-2 00:53
标题: [转帖]生物芯片技术(长篇连载)

  生物芯片技术是90年代中期以来影响最深远的重大科技进展之一,是融微电子学、生物学、物理学、化学、计算机科学为一体的高度交叉的新技术,具有重大的基础研究价值,又具有明显的产业化前景。由于用该技术可以将极其大量的探针同时固定于支持物上,所以一次可以对大量的生物分子进行检测分析,从而解决了传统核酸印迹杂交(Southern Blotting 和Northern Blotting等)技术复杂、自动化程度低、检测目的分子数量少、低通量(low through-put)等不足。

  通过设计不同的探针阵列、使用特定的分析方法可使该技术具有多种不同的应用价值,如基因表达谱测定、突变检测、多态性分析、基因组文库作图及杂交测序(Sequencing by hybridization, SBH)等,为"后基因组计划"时期基因功能的研究及现代医学科学及医学诊断学的发展提供了强有力的工具,将会使新基因的发现、基因诊断、药物筛选、给药个性化等方面取得重大突破,为整个人类社会带来深刻广泛的变革。该技术被评为1998年度世界十大科技进展之一。


作者: donkey    时间: 2004-12-2 00:55
抗体芯片——新一代的蛋白分析手段

  蛋白质是一切生命活动的基础,受基因表达的调控,因而以检测样品中的mRNA为基础的cDNA芯片是当今研究中倍受关注的研究手段。但是,由于存在着转录后加工、翻译调控以及翻译后加工等多种调节机制,基因的表达,或者说mRNA的水平并不必然代表蛋白质产物的水平。因此,以微阵列技术对生物样品作整体蛋白质表达分析的蛋白芯片在后基因组时代越来越受重视。抗体芯片(Antibody Microarray,抗体微阵列),是蛋白质芯片的一种,是检测生物样品中蛋白表达模式的新方法。这种新技术使得研究人员可以在一次实验中比较生物样品中成百上千的蛋白质的相对丰度,将极大促进蛋白质组目前的研究状况——因为以现有的技术中对蛋白质进行这种复杂的分析是非常困难的。

  Clontech公司第一代的抗体芯片Ab Microarray 380(Cat.No.K1847-1)包含固定在玻璃片基上的378种已知蛋白质的单克隆抗体,可以在一次简单实验中同时检测样品中的378种蛋白质的表达情况,并且可以在一张芯片上对两种样品的表达模式进行比较分析。这使得抗体芯片在毒性实验、疾病研究和药物开发上有广泛的应用前景。Ab Microarray 380芯片上每个抗体都是并列双点以增加结果的可靠性,抗体针对广泛的胞内蛋白和膜结合蛋白,已知参与信号传导、癌症、细胞周期调控、细胞结构、凋亡和神经生物学等广泛的生物功能,因而可以用于检测某一特定的生理或病理过程相关蛋白的表达模式。尽管抗原来自人,但很多抗体可以识别小鼠或大鼠的样品。详细的资料可以上网查询。

  芯片上抗体的选择不但根据其特异性,也根据抗体的结合亲和力,在验证实验中特异性低、交叉反应高、或者信号强度低的抗体都被排除,另外所有抗体都经过检验保证得到的信号与抗原浓度有良好的线性相关,那些没有良好的线性剂量关系的抗体都被排除。因此抗体芯片能够检测到样品中很低的pg/ml浓度的抗原。

  第一代的蛋白芯片和DNA芯片一样是作为一种定性分析的工具,可用于分析样品之间相关蛋白的相对表达丰度;还可以作为DNA芯片的补充,用于研究蛋白和基因表达之间的关系。

  操作流程

  抗体芯片并不要求特殊的技能,只要一般常规的操作就可以完成以往极为复杂耗时的工作。整个操作流程包括:从50—200mg组织或细胞、体液中进行蛋白质抽提——用Cy5和Cy3两种不同颜色的荧光分子分别标记两个样品——洗去多余的标记分子——与芯片杂交孵育——扫描分析结果。整个过程从样品制备到结果分析只要一天即可完成,你只要准备好样品、荧光染料、脱盐纯化柱(处理体液样品时用)和荧光扫描仪,其他的试剂全部由试剂盒提供。

  优化的试剂

  随芯片试剂盒提供的蛋白抽提/标记缓冲液,是专门为抗体芯片而设计的,非常温和的去垢剂在能高效抽提膜结合蛋白(相比SDS煮沸法能抽提95%以上的蛋白)的同时能保持蛋白的天然活性(非变性条件),这样能够保证抽提的蛋白的溶解性和代表性,保证以后的实验结果的真实性,和原始材料的一致性。

  Internally Normalized Ratio

  根据操作手册进行内源标准化处理可以得到一个内源标准化信噪比(INR),内源标准化处理是指对两个样品(A、B)中分别用两种荧光标记分子(Cy3和Cy5)标记,并交叉与芯片杂交(见图,A-Cy5和B-Cy3一组,A-Cy3和B-Cy5一组分别和芯片杂交),可以作为消除抗原—抗体结合效率差异的对照,也可以消除潜在的不同荧光分子的标记效率差异。假如Cy5标记效率高于Cy3,单纯一个实验的结果就会有偏差(Cy5标记的样品信号偏高),用这种双向交叉反应就可以消除这种偏差。两芯片杂交结果分别得到两组Ratio值,通过免费下载的工具就可以自动算出每个抗体抗原的INR值,这就代表在两个样品间某个蛋白的相对丰度。这种内源标准化处理可以大大减小样品分析的偏差。

  抗体芯片检测的结果不是蛋白的绝对含量而是378个目的蛋白在两个样品之间的相对丰度。值得注意的是由于抗体抗原结合的差异、标记差异等原因,根据芯片结果信号的强弱判断同一样品中两种不同蛋白的多少是不恰当的。

  特点

  * 整个分析过程可以在一天内完成

  * 用荧光分析的方法比较两个样品之间378个蛋白质的相对丰度

  * 适用于包括组织、细胞系、体液在内的多种生物样品

  * 试剂盒提供完整的样品抽提制备、标记、孵育所需的Buffer,特别设计的样品制备的过程能保持样品的完整性和溶解性,保证制备样品具有代表性和一致性。

  * 芯片上的抗体包含针对信号传导、癌症、细胞周期调控、细胞结构、凋亡和神经生物学等广泛的生物功能的相关蛋白,跨度大、适用范围广。

  * 芯片上的抗体分别经过特异性抗原、细胞系和组织的检测,灵敏度高达pg/ml

  * 开放性的芯片平台设计,可以用各种型号DNA芯片荧光扫描仪进行检测。


作者: donkey    时间: 2004-12-2 00:56
生物芯片:本世纪最大的产业

  据嗣裢?市场报(李卫红):生物芯片的技术来源追朔到一个多世纪之前,EdSouthern先生发现被标记的核酸分子能够与另一被固化的核酸分子配对杂交。因此,Southernblot可被看做是最早的生物芯片。在八十年代,BainsW.等人就将短的DNA片断固定到支持物上,借助杂交方式进行序列测定。但基因芯片从实验室走向工业化却是直接得益于探针固相原位合成技术和照相平板印刷技术的有机结合以及激光共聚焦显微技术的引入。它使得合成、固定高密度的数以万计的探针分子切实可行,而且借助激光共聚焦显微扫描技术使得可以对杂交信号进行实时、灵敏、准确的检测和分析。

  何为生物芯片

  生物芯片是将生命科学研究中所涉及的不连续的分析过程(如样品制备、化学反应和分析检测),利用微电子、微机械、化学、物理技术、计算机技术在固体芯片表面构建的微流体分析单元和系统,使之连续化、集成化、微型化。生物芯片技术有四大要点:芯片方阵的构建、样品的制备、生物分子反应和信号的检测。

  生物芯片的主要类型

  生物芯片技术是一种高通量检测技术,它包括基因芯片、蛋白芯片及芯片实验室三大领域。

  1、基因芯片(Genechip)又称DNA芯片(DNAChip)。它是在基因探针的基础上研制出的,所谓基因探针只是一段人工合成的碱基序列,在探针上连接一些可检测的物质,根据碱基互补的原理,利用基因探针到基因混合物中识别特定基因。它将大量探针分子固定于支持物上,然后与标记的样品进行杂交,通过检测杂交信号的强度及分布来进行分析。

  2、蛋白质芯片与基因芯片的基本原理相同,但它利用的不是碱基配对而是抗体与抗原结合的特异性即免疫反应来检测。蛋白质芯片构建的简化模型为:选择一种固相载体能够牢固地结合蛋白质分子(抗原或抗体),这样形成蛋白质的微阵列,即蛋白质芯片。

  3、芯片实验室为高度集成化的集样品制备、基因扩增、核酸标记及检测为一体的便携式生物分析系统,它最终的目的是实现生化分析全过程全部集成在一片芯片上完成,从而使现有的许多烦琐、费时、不连续、不精确和难以重复的生物分析过程自动化、连续化和微缩化,属未来生物芯片的发展方向。

  生物芯片的应用前景展望

  生物芯片的成熟和应用一方面将为本世纪的疾病诊断和治疗、新药开发、分子生物学、航空航天、司法鉴定、食品卫生和环境监测等领域带来一场革命;另一方面生物芯片的出现为人类提供了能够对个体生物信息进行高速、并行采集和分析的强有力的技术手段,故必将成为未来生物信息学研究中的一个重要信息采集和处理平台。

  关于生物芯片的市场状况,到2001年,全世界生物芯片的市场已达170亿美元,用生物芯片进行药理遗传学和药理基因组学研究所涉及的世界药物市场每年约1800亿美元。在最近的5年之内,应用生物芯片的市场销售将达到200亿美元左右。根据专家统计:全球目前生物芯片工业产值最近5年的市场销售可达到200亿美元以上。到2005年,仅美国用于基因组研究的芯片销售额将达50亿美元,2010年有可能上升为400亿美元。这还不包括用于疾病预防及诊治及其它领域中的基因芯片,这部分预计比基因组研究用量还要大上百倍。因此,基因芯片及相关产品产业将取代微电子芯片产业,成为本世纪最大的产业。

  我国生物芯片的市场前景

  1、药物筛选和新药开发:由于所有药物(或兽药)都是直接或间接地通过修饰、改变人类(或相关动物)基因的表达及表达产物的功能而生效,而芯片技术具有高通量、大规模、平行性地分析基因表达或蛋白质状况(蛋白质芯片)的能力,芯片作大规模的药物筛选研究可以省略大量的动物试验甚至临床,缩短药物筛选所用时间,提高效率,降低风险。

  2、中药基因组学研究和我国的中药现代化:中药基因组学的含义是通过现代科学技术手段结合传统中药理论和现代科学理论,将中药的药性、功能及主治与其对特定疾病相关基因表达调控的影响关联起来,在分子水平上用现代基因组学,特别是功能或疾病基因组学的理论来诠释传统中药理论及作用机理。能够做到这一点,将极大地推动我国几千年悠久深厚的中药文化资源得到进一步的发展和弘扬。

  3、疾病诊断:基因芯片作为一种先进的、大规模、高通量检测技术,应用于疾病的诊断,其优点有以下几个方面:一是高度的灵敏性和准确性;二是快速简便;三是可同时检测多种疾病。

  4、环境保护及其他:在环境保护上,基因芯片也广泛的用途,一方面可以快速检测污染微生物或有机化合物对环境、人体、动植物的污染和危害,同时还可用于农业、商检、司法等领域的实用化芯片开发出来。

  将生物芯片的产业化

  1、制造技术:基因芯片从实验室走向工业化却是直接得益于探针固相原位合成技术和照相平板印刷技术的有机结合以及激光共聚焦显微技术的引入。它使得合成、固定高密度的数以万计的探针分子切实可行,而且借助激光共聚焦显微扫描技术使得可以对杂交信号进行实时、灵敏、准确的检测和分析。芯片技术原理并不复杂,就其制作涉及的每项技术而言,我国已具有实际能力。芯片如何实现各种相关技术的整合集成,是我国发展生物芯片的难点。

  2、基因、蛋白质等前沿研究:对生物芯片工业来讲,除去制作技术外,关键就是芯片上放置的基因和蛋白质等物质了。如果制作用于检测某人核苷酸多态性以诊断某种遗传病,或者用于基因测序,那么芯片探针上一般放置的是有8个碱基的寡聚核苷酸片段,基因芯片和蛋白质芯片则相应放置的是基因标志性片段EST(可表达的基因标志性cDNA序列片段,可以通过对mRNA的双端尾侧的几百个碱基进行测序得到)、全长基因或蛋白质。因此制作生物芯片首先要解决的是DNA探针、基因以及蛋白质的尽可能全面和快速的收集问题。

  国内相关上市公司

  主要有:星湖科技、复星实业、上海医药、张江高科等。


作者: donkey    时间: 2004-12-2 00:56
芯片的构建和阅读

Vivian G. Cheung, Michael Morley, Francisco Aguilar,

Aldo Massimi, Raju Kucherlapati Geoffrey Childs

联合基因科技有限公司 吴凌凌 译

  摘要

  制作芯片和获得芯片的数据有许多不同的方法。这里我们介绍了在学术领域中两种芯片的构建和使用。除了详细说明了技术细节外,我们还对组成和方法的优缺点进行了评论,同时还介绍了杂交的方法。用我们所建立和使用芯片的方法来回答生物领域问题的事实证明了这种技术在大学的环境下是可行的。

  一种获得基因功能信息的高通量的方法是cDNA芯片。在一块显微镜载玻片上包含了几百至几千个固定的DNA样本,以类似于Northern blot 和 Southern blot的方法进行杂交。了解了这个方法后,我们决定在我们各自的实验室Pennsylvania大学(Penn)和Albert Einstein学院医学部(AECOM)制作了高速,高精度的芯片。这个设备是由Stanford医学院Pat Brown制造的,第一次论证了这个方法的可行性。我们的目标是(1)最终以合理的价格,用一块或几块芯片来检测哺乳动物细胞中每个基因的表达,(2)发展以芯片为基础的绘图方法,(3)兼顾硬件和超作方法,尽可能地提高灵敏度。

  玻片的优势

  一个理想化的支持物允许探针有效地固定在其表面,探针与目标分子能牢固地杂交结合。与另一种用于制作芯片的标准支持物尼龙一样,玻璃有许多的优点。它也有其特长。首先,DNA样品以共价键的形式结合在处理过的玻片上。第二,玻璃是一种耐用的材料,能够耐高温和高离子强度溶液的洗涤。第三,玻璃不是多孔材料,使杂交的容量能保持在最小,因此能提高探针与目标分子的退火效率。第四,由于材料的低荧光性,不会有背景的影响。最后,两种不同的探针能够标上两种不同的荧光标记,在一片芯片上同一个反应中同时孵育;尼龙就受到连续或平行杂交的限制。

  芯片需要大量的探针固定(或排列)在玻片上,这里我们描述了AECOM芯片,扫描仪以及进行了关于设计和操作的讨论。如果想得到关于Penn芯片的信息,请到http://w95vcl.neuro.chop.edu/vcheung查找。

  自动化装置性质

  AECOM点样仪,Albert,产生高密度的分隔的矩阵,矩阵包括cDNA、基因组DNA或其他类似的生物物质。机械的基本组成有计算机控制的三轴向的机械手和独特笔尖装置。

  设计特点

  机械手被设计成能自动从96或384孔的微量滴定板中选取样本,12支点样笔同时升起,每个点样笔收集了250-500nl溶液,在每块玻片上放置0.25-1nl,产生的点的大小范围直径为100-150μm。机械手是由设置好的程序控制的,能进行连续的点样,每一点避免与相邻的点接触,每点的中心距离大约为200-250μm。检测的精密度大约是10μm。机械手放置在可视工作平台上(Newport公司),允许放置大量的显微镜玻片,微量滴定板,三个洗涤装置和一个干燥装置。

  洗涤装置是个固定的容器,装有蒸馏水,两次微量滴定板使用后需要更换。当笔尖浸过液体后,机械手要来回摇动点样笔(大约5Hz)来增加清洁程度。虽然我们认为没必要,但电脑控制的洗涤液可用超声波或流动的水来替代。干燥装置实际上是干/湿真空吸尘器(Sear公司,美国),接头与插入笔尖的限制插口相匹配。干燥器要做到在笔尖有快速流动的空气围绕,保持局部真空。

  所设计的机械手的重要目的是要达到在最小的震动范围内的高速和高精确性。我们使用了保湿的可视工作平台,精密螺旋驱动地机械滑动,高分辨率的解码器的随动系统和沿着x轴方向的两侧支杆,避免了在一些系统中所见的悬臂结构。利用第二x轴的滑面来增加系统的固定性,能依次产生更快的定位以及通过工作平台的准确一致性。这些特点允许在精确率下的快速运动,使机械手能在一秒内对两块显微镜载玻片操作。

  带有笔尖的点样笔支持物装置是一个重要的部分。我们的设计结合了线形运动,控制点样笔的方向,允许在最小的阻力下精确地纵轴运动,以防止在其他方向上的错位。我们设计的另一个独特之处是可调整的末端丝,允许在10μm的范围内校直每个点样笔的轴,以保证所有12支笔尖能在同一时间内接触显微镜玻片。而另一个没有这特点的设计需要与点样笔的精确长度一致以适应多点样笔的操作。每个点样笔由低强度的弹簧作为支持,保证在未接触表面时能回到伸展的位置。笔尖是由直径大约为1.6mm的不锈钢材料逐渐处理变细直至每点直径为100μm。再沿着中心垂直切割,在尖端分成两部分,每部部分5μm。

  这个系统由可视基础程序控制的,在Microsoft Windous NT环境下运行,软件提供:印刷程序具体化;完成系统校正;显示真正地时间位置、速度和产生的错误;与其他功能参数一样重要的随动系统;动态地显示打印过程中的重要参数。随动系统控制的计算机中的插件能够动态地控制高速、复杂的机械手的动力,并设计成以它的运动来控制程序的语言。可视原理和随动插件运动控制程序相互作用,交换了参数、图象和所需的命令。微量滴定板的同一性是由扫描它的阅读器所决定的。由于有笔尖易被灰尘和纤维阻碍的问题,打印机现在被附上了软保护壁允许三个方向的随意进入并且合并了高效率效式空气过滤与吹风机以达到湿气的再流通。

  操作

  打印的第一步是将显微镜载载玻片以统一的形式排列在工作平台上,用在激光平台上的1孔作为引导,然后按下。膜微量滴定板固定器突然定位在平台的某一位置,用同样的孔来排列自己。同样的微量滴定板固定器保持在冲洗状态,也能被放置在任何方便的位置。使用者可任意选择保留的配置或进入配置中的参数。缓慢移动模式用于校验,使坐标位置正确。最后,使用者提示增加微量滴定板,机械手进入自动点样操作。点样笔从微量滴定板中收集样品并点样,从而对每块载玻片进行同样的操作。然后冲洗/干燥操作,再对新的样品进行重复操直到当所有的样品全部完成。在点样的过程中,程序自动地将同一来源的微量滴定板保留在磁盘上,优化每一点以及载玻片上的X-Y终点位置。这个文件稍后与基因说明文件合并,产生载玻片上已印好的点的复合说明。

  观察

  点大小的精确性依赖着笔尖的规格。尖端精细的槽口要求特殊的微加工工具就象Wire EDM。我们用的笔尖是TeleChem的,与我们的笔轴相匹配。它们的性能是可接受的,虽然它们是十分脆的。我们希望能获得有进展,更耐用的样式。

  扫描仪特点

  我们设计和制造的激光扫描仪IRIS,是Standford大学和国家健康研究所研制的器械的衍生产品,使灵敏度和动态范围最大化。我们也试图将运转的适应程度结合到设计中,因此在将来能够进行改进,允许更有效的荧光染料的测定(最近引进了DNA自动测序仪)。两个有染料标记的目标杂交后,玻片被扫描后产生16位TIF图象。每点的象素强度是与染料分子的数量以及与PCR产物斑点杂交探针数量成比例。

  设计特点

  激光扫描仪有一些关键的组成。软件是与HPVEE绘图程序语言同步的程序。规划图形的运动,控制A/D转换数据的捕获,处理两个频道的信号,显示每一次扫描的真实的时间参数,产生TIF文件的标题以及保存TIF图象的结果。八个样本引进的数据平均为每一个象素,转换为二进制整数,为校正图象的变化,轮流进行的扫描,然后保存。使用者可以看见大屏幕的示波境波形就是每次扫描的平均值,最小值和最大值统计。

  操作

  自动化分级操作搜索扫描模式,在X轴的方向上连续地通过显微镜载玻片,然后在Y轴的方向上移动一个象素的位置,产生一个bi-方向的光栅模式。X轴的信号解码器是由特殊设计的触发回路处理的,取消了每次扫描后的随动震动,产生了在所有方向上的A/D转换的清晰触发。回路保证了微米以下的空间分辨率和图象的线性结构。两条激光光柱合成联合直线,通过双重光束分割滤波器反射过目标,形成刺激显微镜载玻片上染料分子发荧光的精细聚焦光束。部分荧光是由目标分子捕获的,通过双光分裂滤波器发送,在滤波立方中分成红绿两种信号,在波段通过器中过滤。发送入各自的转换电信号的光电管(PMT0)中。每个光电管被A/D转换器放大,过滤和采样。转换器完成8个附加抽样,软件达到平均每象素8个样本,产生真实的16位分辨率的图象。

  观察

  我们最初获得了不恰当的信噪比,因此制定了双成分过滤器,(根据浓度)建立了我们规格,降低DC成分的干扰水平。立体过滤成分的去除,进一步改进了灵敏度。我们原先的设计有包括两个相配的聚焦镜的立体过滤器,小孔和不同的元件,这些如果组合在一起形成了共焦显微镜。但是我们发现光学共焦不能加强检测。事实上,镜头使干扰水平增加了两倍,这是由于自动的荧光性-整个装备导致了所需信号相当大的衰减,结果所有信噪比大大地减弱。我们因此推断在X轴方向的立体过滤在应用中没有起到作用。我们发现激光输出的清晰过滤对降低干扰是基本的。最后,为了达到可视成分的精细排列和精确的最佳聚焦,利用了刻度载玻片和软件,获得了高灵敏度的双物镜系统和广大的动态视野范围。

  有时遇到的问题是镜子干扰的存在,由十分明亮但比我们所需的点的图象要小(1μm-25μm)的信号组成。我们认为这是由于灰尘和没结合的染料所形成的。在干净的环境中操作,严格遵守杂交程序对减少这些影响是十分必要的。

  在屏幕上显示的波形是可重复的。当比较同一行的重复扫描,我们发现极好的重复性。从中我们降低了由于扫描仪的光学和电子学因素而没传入的有用信号所产生的变形。当调节不同的控制参数时,这个显示能力也使我们精确地测量了在信号-干扰率上的影响。PMT冷却是包括在保持电子干扰最小化的设计中的。迄今为止,当PMT冷却到-18℃时,我们还没有找到在提高灵敏度方面的巨大进展。系统的干扰水平还没有达到电子干扰的水平,它的重要元件仍旧有光学干扰。可能是杂交进程中在载玻片上留下了一些自动显示荧光的残余。我们正开发新的方法来进一步减少干扰水平。

  从目前系统的灵敏性来看,10 mW激光的能量看来是足够的,5mW就能产生令人满意的结果,并且显示了在这个区域中系统的增进是直线的。PMT的电压和激光能量是可交换的,不需要降低信号-干扰率。

  性能

  比较扫描仪的性能,通常没有可接受的标准。为了测定我们扫描仪的性能,通过利用一些包含不同浓度Cye3染料校准的载玻片来测定灵敏性。结果显示扫描仪能可靠地测定在100μm点上少于10-18 摩尔的染料的浓度。我们试图实现对染料结合和杂交能力测定的附加实验,但是性能显示我们用目前的探针预备方法能探测到低量的mRNA。初步的结果显示我们的扫描仪有比市场上的扫描仪高四倍的灵敏度,同时能处理多三倍的信号(在饱和状态前)。我们的扫描仪有超过1000倍的动态范围,明显比高密度过滤器的10倍的动态范围要好。我们能同时进行双色成像,但是是有限制的,因为有两个通道之间的干扰。这能通过在一个时间扫描一种颜色的方法而最小化,虽然当每块载玻片用两种以上的染料时,交叉激发仍能产生干扰现象。由我们的系统产生的典型的芯片,扫描用典型的12.8μm的象素大小,能产生16位分辨率的2048 by 1550象素的图象。每个点覆盖了大约100个象素,成像的扫描时间大约是40分钟。

  杂交注意事项

  DNA的数量。芯片上每点DNA的数量是可估计的。猜想每点堆积的形状是半球形的,它的容量是可以计算的:

一点的量=1/2 × (4/3πr3 )

每点的DNA的数量=样本的浓度 × 每点的量

  斑点的容量少意味着用于杂交的探针的数量也很少,即使样本的浓度很高。必须努力减少这样的限制。一些因素必须考虑到,除了探针DNA的数量外,还有与目标分子相互补的探针DNA的比例,长短,目标分子的活性,就象用于检测信号方法的灵敏度影响着信号的强度。

  杂交信号的浓度是与目标分子活性成比例的,与它的长度成反比,因此目标分子的特殊活性是十分重要的。每次实验的杂交时间也应该精确测量。

  沉积机制

  点样笔的精确切口允许利用毛细现象从微量滴定板中吸取样本。压力由点样笔向下的运动产生,载玻片的表面张力拖动样本从切口内到玻片上。点的大小依赖于点样笔向下及离开载玻片的加速度和载玻片表面的张力。点样笔向玻片的加速度与点的大小成比例,因此能调整到所希望的点的大小。当点样笔从玻片收回后,在切口内的样品和沉积在载玻片上的样本之间的流量就形成了。如果收回的速度很快尖端的量就被打断了,产生了大的点,不是完美的半球形。如果收回的速度十分慢,点样量就在尖端"修剪"了,留下的点就小。

  DNA样本

  样本准备在96孔的板上,乙醇沉淀并用70%的乙醇洗涤,然后在2×柠檬酸钠(SSC)中重建。样本浓度的重建依赖于所需点的大小和样本的粘稠度。如果样本需要排列为小的点,它们的浓度就要高。但是,限制因素是笔尖的设计,会使样本粘稠而难以排列,那些浓度大于2μg/μl的太粘了而不能点样。我们点样的目标浓度是每个样本15ng一个点。虽然我们在2SSC中重新建立了样本,但是溶液的离子浓度能在1×SSC到5×SSC之间而不影响杂交,然而样本溶解在溶液中后离子浓度高于5×SSC就很难与载玻片接触。

  将DNA固定到玻璃片

  在DNA排列到玻片上以后,它们是自然干燥的。样本的固定是通过紫外线(UV)固定的,形成在DNA上的胸腺嘧啶脱氧核苷残基和硅烷玻片上氨基之间的共价键。类似的方法也用于将DNA样本固定在尼龙膜上。为了完成最大化的杂交,要在紫外线交联之前,芯片要保持微量的湿润,通过将"排列"暴露在沸水中,然后在254nm的紫外线下暴露到0.27J/cm2 。我们发现精密测量照射的量是十分有利的,只要确定产生最佳信号的照射最佳水平。过长时间的照射导致了由于连接不充分而产生的DNA损失和个别地,DNA样本的过多的断裂。在交联后,过多的DNA分子在室温下被0.1%的SDS冲洗掉,然后在杂交以前,排列的样本在95℃的水中变性。

  杂交中的

  有许多方法使目标分子和探针进行杂交。我们发现三个工作溶液对于荧光探针和固定在玻璃上的DNA的杂交是很好的;与溶剂和温度不相关。一般来说,在42℃,甲酰胺基础上的杂交比65℃水溶液中的要好,因为促进了信号和杂质的比率。但在甲酰胺中的动态杂交要比在水溶液中的慢,当用低拷贝量的目标分子时,建议使用有右旋糖苷硫酸盐或聚乙烯乙二醇的水溶液。

  类似的方法用于使"杂质"最小化:用Denhardt试剂,十二烷基硫酸钠(SDS)修剪鲑精DNA,tRNA和Cot1DNA。当我们用cDNA时,也包括多聚A RNA或与富含T的序列相连接的多聚A。

  讨论

  我们集体的努力显示了在学术环境下如何实现芯片技术的。在AECOM,芯片和扫描仪是由家庭工程师制造的,使用家庭工程师的好处是她/他是亲手改良和维修仪器的。在Pennsylvania大学,芯片是在大学机械店的帮助下在实验室中制造的;扫描仪(General扫描仪公司)是购买的。

  芯片构建的改良技术必须与基因组克隆图谱实用性的增加,好的cDNA克隆,分析工具的良好使用相匹配。这些工具的综合和易操作性对基因研究发展的速度是十分重要的。


作者: hx0999    时间: 2005-2-4 20:15
好贴,值得一看!!!!
作者: wqehand    时间: 2005-3-2 01:25

好贴

感谢


作者: yulc831    时间: 2005-3-9 21:39

好好很好,多多亦善


作者: aso    时间: 2005-3-11 17:58
好帖啊,顶一下!
作者: leezq2003    时间: 2006-1-20 23:32

能再详细介绍一下蛋白芯片(比如抗体芯片)的制作流程和控制要点、使用方法、结果处理等等,那就更好了


作者: 晴天有雾    时间: 2006-1-23 19:11

不错!谢谢,我们公司一直在做生物芯片用的波片,但对生物芯片的知识却知道的不多,今天算是了解了一些!


作者: huangdengpin    时间: 2007-8-13 22:33
不错!谢谢好贴,值得一看!!!!




欢迎光临 光电工程师社区 (http://bbs.oecr.com/) Powered by Discuz! X3.2