|
|
3楼

楼主 |
发表于 2010-10-19 22:03:45
|
只看该作者
本帖最后由 soft 于 2010-10-19 22:05 编辑
图1:大规模集成的微液路芯片
其二、分析速度极快。Mathies研究小组[10]在一个半径仅为8厘米长的园盘上集成了384个通道的电泳芯片。他们在325秒内检测了384份与血色病连锁的H63D 突变株(在人HFE基因上)样品,每个样品分析时间不到一秒钟。
其三、高通量。如上所述的Quake[9]和Mathies[10]两个研究小组的研究成果已显示出这一特点。
其四、能耗低,物耗少,污染小。每个分析样品所消耗的试剂仅几微升至几十个微升,被分析的物质的体积只需纳升级或皮升级。Ramsey最近报导[11],他们已把通道的深度做到80nm,这样其体积达到皮升甚至更少。这样不仅能耗低,原材料和试剂及样品(生物样品和非生物样品)极少(仅通常用量的百分之一甚至万分之一或更少),从而使需要处理的化学废物极少,也就是说,大大降低了污染。
其五、廉价,安全。无论是化学反应芯片还是分析芯片由于上述特点随着技术上的成熟,其价格将会越来越廉价。针对化学反应芯片而言,由于化学反应在微小的空间中进行,反应体积小,分子数量少,反应产热少,又因反应空间体表面积大,传质和传热的过程很快,所以比常规化学反应更安全。而分析芯片因污染小,而且可采用可降解生物材料,所以更环保和安全。
四、芯片实验室的应用
在生物医学领域中的应用
①.临床血细胞分析 近来Ayliffe等人研制出了第一台阻抗计数、光谱分类的细胞芯片分析仪。他们将微流路和微电极组合到芯片上,实现了细胞的分类和计数。尔后许多研究者对此进行了改进,使这一技术日趋完美,不仅可以进行细胞的分类和计数而且还实现了血红蛋白的定量测定。值得一提的是Gaward等[12]研制了一种2cm×3cm大小的细胞分析芯片。他们利用阻抗法和光学分析技术实现了细胞的分析和颗粒大小的测定。近来美国华盛顿大学与美国Backman公司合作研究出了可供检测血细胞的一次性塑料芯片,大大减少了检测成本和仪器的体积。
②核酸分析 微流控芯片实验室一开始就在DNA领域显示其极强的功能,涉及到了遗传学诊断,法医学基因分型和测序等方面内容。Tezuka等[13]在芯片上构建一种整体集成的纳米柱型阵列结构,这种纳米柱直径200-500nm,高5m,类似于排列在一起的多个梳子,用于研究DNA的电泳特征及其分离,已分离了T4 DNA和165.5kbp的lambda标样;Lee等[14]制成集成有微混合器和DNA纯化装置的一次性微流控芯片系统,用于DNA的样品制备,在微通道里放置阴离子交换树脂,得到了单一头发丝中的线粒体DNA的电泳图; Hofgärtner等[15]利用微流控芯片快速分析脑脊液样品中的DNA,诊断带状疱疹病毒性脑炎所需时间只有脑脊液样品普通凝胶电泳的百分之一;本文作者最近用自研的微流控芯片系统分析了肿瘤细胞基因甲基化测定的PCR样品,与普通凝胶电泳相比其检测灵敏度提高了1024倍,其分析时间缩短了100倍以上。
③蛋白质分析 Duffy等[16]利用CD盘式塑料阵列芯片采用离心的方式进行了碱性磷酸酶分析,每个样品检测只需3L试剂,几分钟内可分析几十个样品。瑞典的GYROS公司已生产出类似的产品并进行了肌球蛋白、IgG、IgA分析[17]。近来Burke 和Regnier[18]在芯片上利用电泳辅助微分析系统(Electrophoretically mediated microanalysis, EMMA)进行了β-半乳糖苷酶的分析测定。以Ramsey实验小组[19]为代表的很多研究者利用芯片进行了蛋白质和肽的二维电泳分离与检测,为蛋白质的组学研究提供了一种快捷、便利的分析工具。
8.芯片实验室产业化发展越来越明显、越快速。由于它的基础研究和技术研究越来越专和精,使整体技术发展速度加快,再加之它朝着检测功能化方面发展,其应用前景越来越广。因此,产业化前景看好,有可能成为新的经济增长点。 |
|